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Abstract

Purpose – For policymakers and participants of financial markets, predictions of trading volumes of financial
indices are important issues. This study aims to address such a prediction problem based on the CSI300 nearby
futures by using high-frequency data recorded each minute from the launch date of the futures to roughly two
years after constituent stocks of the futures all becoming shortable, a time period witnessing significantly
increased trading activities.
Design/methodology/approach – In order to answer questions as follows, this study adopts the neural
network for modeling the irregular trading volume series of the CSI300 nearby futures: are the research able to
utilize the lags of the trading volume series tomake predictions; if this is the case, how far can the predictions go
and how accurate can the predictions be; can this research use predictive information from trading volumes of
the CSI300 spot and first distant futures for improving prediction accuracy and what is the corresponding
magnitude; how sophisticated is the model; and how robust are its predictions?
Findings – The results of this study show that a simple neural network model could be constructed with 10
hidden neurons to robustly predict the trading volume of the CSI300 nearby futures using 1–20 min ahead
trading volume data. Themodel leads to the root mean square error of about 955 contracts. Utilizing additional
predictive information from trading volumes of the CSI300 spot and first distant futures could further benefit
prediction accuracy and the magnitude of improvements is about 1–2%. This benefit is particularly significant
when the trading volume of the CSI300 nearby futures is close to be zero. Another benefit, at the cost of the
model becoming slightly more sophisticated with more hidden neurons, is that predictions could be generated
through 1–30 min ahead trading volume data.
Originality/value – The results of this study could be used for multiple purposes, including designing
financial index trading systems and platforms, monitoring systematic financial risks and building financial
index price forecasting.

Keywords CSI300 futures, Trading volume, Forecasting, Neural network

Paper type Research paper

1. Introduction
For policymakers and participants of financial markets, predictions of trading volumes of
financial indices are important issues. This is because such predictions carry significant
market implications for financial index prices and their movements (Wang et al., 2013, 2019;
Hou and Li, 2014; Sohn and Zhang, 2017; Susheng and Zhen, 2014; Yan and Hongbing, 2018;
Ausloos et al., 2020), which are an essential part of various decisioning processes with
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purposes of generating trading profits and preventing trading losses. Considering the
tremendous importance and need to monitor ever-changing financial markets that ultimately
determine the safety and soundness of the financial and economic environment of different
countries and regions, it is of particular interest to regulators and traders to understand the
issue of financial trading in the high-frequency domain (Xu and Zhang, 2023a). To fulfill this
mission, the literature has witnessed a great amount of effort in constructing different types
of models for making predictions. These modeling techniques have included traditional
regression types of (time-series) econometric models and machine learning models.

1.1 Traditional regression and time series models
Chen et al. (2011) have proposed a hierarchical model that has two different components,
which combine an intraday approach and a daily approach, to predict the trading volumes of
30 DJIA stocks. Chen et al. (2011) have found that their proposed hierarchical method leads to
higher prediction accuracy than any of the two individual approaches. Joseph et al. (2011)
have used a simple linear regression model for predictions of abnormal activities of trading
for 470 S&P 500 companies. Joseph et al. (2011) have determined that online search activities
offer useful predictive information for the prediction horizon of one week. Brownlees et al.
(2011) have compared a rolling average method and a multiplicative error model for
prediction purposes of different exchange-traded fund volumes. Brownlees et al. (2011) have
found that the multiplicative error model results in higher accuracy. Gharehchopogh et al.
(2013) have applied a simple linear regression model for predicting the trading volume of the
S&P 500 index by using predictive information from the price of the index. Ye et al. (2014)
have compared static and dynamic versions of a volume-weighted approach for predicting
SSE 50 stocks’ intra-daily volumes. Ye et al. (2014) have suggested that the dynamic version
leads to better predictions. Satish et al. (2014) have proposed combining anARIMAmodel and
a rolling average approach for predictions of trading volumes of 30 DJIA stocks. Bordino et al.
(2014) have found that predictive information from Yahoo Finance could benefit predictions
of trading volumes of NYSE and Nasdaq stocks on both daily and hourly frequency. Nasir
et al. (2019) have used a hybrid framework of vector auto-regressive models and non-
parametric methods for predictions of trading volumes of Bitcoin on a weekly basis through
predictive information from Google searching activities. Nasir et al. (2019) have found that
more searching activities are associated with higher trading volumes of Bitcoin. Kao et al.
(2020) have combined a vector auto-regressive model with a smoothing approach for the
purpose of assessing causality between trading volumes and financial returns.

1.2 Modern methods
Chen et al. (2016) have compared a state-space model based upon Kalman filtering with a
rolling average approach and a multiplicative error method for predictions of trading
volumes of many stocks from different exchanges. Chen et al. (2016) have determined that the
state-space technique leads to higher accuracy for intraday predictions. Ma and Li (2021)
have proposed multi-state Kalman filtering for the purpose of generating higher prediction
accuracy as compared to two-state filtering for trading volumes of nearly a thousand stocks
in the USA.

1.3 Machine learning and deep learning techniques
Kaastra and Boyd (1995) have explored the comparison between a neural network and an
ARIMA model for predictions of trading volumes of different agricultural commodities’
futures contracts. Kaastra and Boyd (1995) have determined that the neural network
generates higher prediction accuracy. Alvim et al. (2010) have examined comparisons among
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a partial least squares, a support vector machine and a naive no-change model for predicting
the trading volumes of nine Bovespa stocks. Alvim et al. (2010) have found that the naive
model leads to the lowest prediction accuracy. Oliveira et al. (2017) have evaluated the
usefulness of a support vectormachine for predicting trading volumes of Dow Jones and S&P
500 on a daily basis by using predictive information from micro-blogging. Lu et al. (2020b)
have combined feature extracting functions of a CNN model and predicting functions of an
LSTM model for predicting prices of stocks by using predictive information from trading
volumes and historical prices. Yan and Yang (2021) have utilized the same predictive
information set as that of Lu et al. (2020b) in predicting prices of stocks through encoder/
decoder LSTM models. Zhao et al. (2021) have considered different machine learning models
that include a support vector machine, a random forest and an LSTM, and a graph-based
method for predicting trading volumes’movement patterns by using predictive information
from prices of stocks. Zhao et al. (2021) have determined that the graph-basedmethod leads to
higher prediction accuracy. Separate from stock markets, Shen et al. (2021) have illustrated
that an LSTM could be useful for predicting trading volumes of foreign business in different
countries and regions. Zhang (2020) has demonstrated that a Levenberg–Marquardt trained
neural network could be effectively utilized for predicting trading volumes of exports and
imports.

1.4 Time series decomposition approaches
Lu et al. (2020a) have explored various machine-learning techniques to predict trading
volumes and prices of carbon emission rights. Lu et al. (2020a) have paid special attention to
the use of ensemble mode decomposition and data smoothing methods. Xie et al. (2020) have
investigated the usefulness of decomposition approaches for predictions of trading volumes
of electricity. For financial indices, Liu et al. (2022) have shed light on how to decompose
trading activities of stocks into short- and long-run components in assessing potential
extreme trading information. Chac�on et al. (2020) have incorporated ensemble mode
decomposition and data smoothing techniques into an LSTM for predictions of prices of
stocks. Chac�on et al. (2020) have determined that such a framework could benefit from
improving prediction accuracy.

Regarding the case of the CSI300, recent work has generally focused on predictions of
prices through the use of different time-series techniques (e.g. Wang and Chen, 2013; Xu,
2017, Xu, 2018, 2019b; Zhang and Sun, 2017; Huang et al., 2018; Zhou et al., 2019a) and
machine learning approaches (e.g. Sun et al., 2015; Yang and Cheng, 2015; Wang et al., 2016;
Lu and Li, 2017; Yao et al., 2018; Ning, 2020; Long et al., 2019; Zhou et al., 2019b). Therefore, our
present work targets at filling the research gap of trading volume predictions for the CSI300.
Specifically, we address such a prediction problem based upon the CSI300 nearby futures by
using high-frequency data recorded each minute from the launch date of the futures to
roughly two years after constituent stocks of the futures all becoming shortable, a time period
witnessing significantly increased trading activities.

The stockmarket was established in China in the early 1990s. Since then, it has undergone
through dramatic developments with economic growth. However, until March 2005, there
was no financial index designed for the purpose of reflecting the overall market status. This
situation was resolved on 04/08/2005 when the CSI300 was launched. This financial index
includes 300 stocks traded in Shanghai and Shenzhen exchanges and reflects 70%of the total
market capitalization. For further financial developments, the futures of the CSI300 indexwas
launched on 04/16/2010. Since then, it has turned out to be the most actively traded financial
contract in China. Two pilot programs by the China Securities Regulatory Commission are
worth noting. First, on 12/05/2011, the CSI300’s underlying stocks available for shortable
trading increased from 90 to 260. Second, on 01/31/2013, the CSI300’s underlying stocks
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available for shortable trading increased from 260 to 300. Such programs have contributed to
elevated trading volumes of the CSI300 and the nearby futures have attracted the most
trading activities (Xu, 2019b). For understanding more institutional backgrounds of the
CSI300, one could refer to Yang et al. (2012), Hou and Li (2013), Xu (2017, 2018, 2019b) and Xu
and Zhang (2021c, 2022b).

To perform our prediction exercise, we adopt the neural network (denoted as NN) for
modeling the irregular trading volume series of the CSI300 nearby futures. The NN has been
found in the literature to have great prediction potential for financial and economic
applications in terms of time-series data (e.g. Yang et al., 2008, 2010; Wang and Yang, 2010;
Cabrera et al., 2011; Zhang and Pan, 2014; Yang and Cheng, 2015; Kong and Zhu, 2018; Xu and
Zhang, 2021b, 2022d). We concentrated on answering the research questions as follows: are
we able to utilize the lags of the trading volume series to make predictions; if this is the case,
how far can the predictions go and how accurate can the predictions be; canwe use predictive
information from trading volumes of the CSI300 spot and first distant futures for improving
prediction accuracy and what is the corresponding magnitude; how sophisticated is the
model; and how robust are its predictions? Our results show that we could construct a rather
simple neural network model with 10 hidden neurons to robustly predict the trading volume
of the CSI300 nearby futures using 1–20 min ahead trading volume data. The model leads to
the root mean square error of about 955 contracts. Utilizing additional predictive information
from trading volumes of the CSI300 spot and first distant futures could further benefit
prediction accuracy and the magnitude of improvements is about 1–2%. This benefit is
particularly significant when the trading volume of the CSI300 nearby futures is close to be
zero. Another benefit, at the cost of themodel becoming slightlymore sophisticatedwithmore
hidden neurons, is that predictions could be generated through 1–30 min ahead trading
volume data.

Our contributions to the literature are as follows. First, to our knowledge, the present
work is the first one on predictions of trading volumes of the CSI300 nearby futures. Our
results here would fill the research gap in terms of gaining understanding of the
problem of trading volume predictions based on an important financial index. These
would have implications from a practical standpoint for many economic agents,
including policymakers, traders and investors and regulatory agencies. Specifically,
the results would benefit from monitoring ever-changing trading activities for ensuring
the safety and soundness of financial systems. Second, the current study is the first one
that employs a powerful machine learning approach for the prediction purpose of the
trading volume of the CSI300 nearby futures. Under the special and unique market
structure, including a domestic individual investor having a high barrier to enter
trading of the futures, as well as a foreign institutional investor with qualifications and
relatively low participation ratios of institutional traders as compared to individual
investors (Ng and Wu, 2007; Xu, 2017), we successfully illustrate that the NN could
effectively make rather accurate and robust predictions of the trading volume, which
shows the great potential of the NN under different market structures. Such results
should be of practical use to financial indices traded in different countries that share a
similar market structure with the CSI300, probably for a particular time period. Third,
our analysis is the first one that adopts the high-frequency data recorded on a minute
basis for financial trading volume predictions, although previous studies have
investigated the issue for different financial indices using intraday trading data (Xu,
2018). A good understanding of high-frequency trading volume predictions could
greatly benefit investors and policymakers in risk management and financial price
index predictions as part of market evaluations.

The remainder of this study is organized as follows. Section 2 describes data used. Section 3
discusses models. Section 4 presents results. Section 5 provides conclusions.
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2. Data
Our data are sourced from Wind Information Co., Ltd, which include trading volumes of the
CSI300 spot and CSI300 futures [1]. The trading volumes are recorded on a minute basis, and
for each trading day, the data span 9:16 a.m.–11:30 a.m. and 1:01 p.m.–3:15 p.m. The time
period analyzed here ranges from 04/16/2010 (the date on which the futures was launched) to
11/14/2014. Thus, there are 299,970 observed trading volumes for each series. The data
recorded on the 1-min basis not only reflect more trading activities than the data recorded on
the 5- or 10-min basis but also maintain sufficient economic significance so that
investigations of the one-minute data carry necessary importance to traders and
policymakers (Xu, 2018). Visualization of the trading volumes of the CSI300 spot, CSI300
nearby futures and CSI300 first distant futures [2] is provided in Figure 1. We could see from
Figure 1 that these three trading volume series show obvious chaotic and noised patterns.
Figure 1 also reveals that the nearby futures contract is most actively traded and its trading
volumes have been expanding during the time period considered here. Summary statistics of
the three trading volumes series are provided in Table 1. We could observe that the trading
volumes are leptokurtic and skewed positively.

3. Models
Two different types of nonlinear autoregressive neural network (denoted as ANN) models
have been considered in this work. The firstmodel is named a pureANNor the CSI300 nearby
futures own-lag only model. The model is denoted as follows:

yðtÞ ¼ f ðyðt � 1Þ; . . . ; yðt � dÞÞ; (1)

where y is employed to reflect the trading volume of the CSI300 nearby futures, t is employed
to reflect the time, d is employed to reflect the number of delays used by the model and f is
employed to reflect the function form of themodel. It is worth noting that the function form f is
yet unknown in advance and the model estimated could be denoted as follows:

yðtÞ ¼ α0 þ
Xk
j¼1

αjf
Xd
i¼1

βijyðt � iÞ þ β0j

 !
þ εðtÞ; (2)

where k is employed to reflect the number of hidden layers used by the model with the
transfer function being f, βij is employed to reflect the parameter that is associated with
the connection’s weight between the input unit i and the hidden unit j, αj is employed to reflect
the connection’sweight between the hidden unit j and the output unit, β0j and α0 are employed
to reflect the constants that are associated with, respectively, the hidden unit j and the output
unit and « is employed to reflect the error item. The second model is an ANN that has
exogenous inputs (ANN–X). The model is denoted as follows:

yðtÞ ¼ f ðyðt � 1Þ; . . . ; yðt � dÞ; xðt � 1Þ; . . . ; xðt � dÞÞ

¼ α0 þ
Xk
j¼1

αjf
Xd
i¼1

βijyðt � iÞ þ β0ijxðt � iÞ
h i

þ β0j

 !
þ εðtÞ; (3)

where x is employed to reflect the trading volume of the CSI300 spot alone or x is employed to
reflect the trading volumes of the CSI300 spot and CSI300 first distant futures together, and β0ij
is employed to reflect the parameter that is associated with the connection’s weight between
the exogenous input unit i and the hidden unit j. The ANN–X model has included more
predictive information as compared to the ANN model and thus could explore the potential
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CSI300 spot CSI300 nearby futures contract CSI300 first distant futures contract

Mean 275,070 1,514 292
Median 222,010 1,101 54
Maximum 9,550,879 31,586 30,849
Minimum 0 0 0
Standard deviation 230,860 1,473 718
Skewness 4.945 2.691 6.327
Kurtosis 79.902 16.450 77.031
Jarque–Bera p value <0.001 <0.001 <0.001

Source(s): Elaborated by the authors

Figure 1.
Trading volume data

Table 1.
Summary statistics of
trading volume data
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usefulness of the additional predictive information for improving prediction accuracy (Xu,
2019a, 2020).

We make use of the ANN models based upon a two-layer feed-forward network whose
hidden layer adopts a transfer function in the form of a logistic sigmoid function as follows:

fðzÞ ¼ 1

1þ e−z
(4)

and whose output layer adopts a linear function. It should be noted that the output y(t) would
be fed back via the delays to inputs of the neural network and the training process would take
on the form of open loops in order to achieve efficiency purposes. In open loops, the true
output will be utilized instead of the estimated output. To be more specific, adopting the open
loop would help ensure inputs to neural networks being more accurate and that resultant
neural networks have pure feed-forward architectures.

In terms of numbers of hidden neurons, we have tested 5, 10, 15, 25, 35 and 50. Regarding the
delays, we have examined 1, 2, 5, 10, 20 and 30. As a result, 36 testing pairs are considered. For
model estimations, we have segmented the trading volume data byusing 70% for training, 15%
for validation and 15% for testing. For the consideration of robustness analysis, we have also
examined the following alternative data segmentation ratios by reserving 15% of the trading
volumeseries for testing: 60%for training and 25%for validation, 65%for trainingand20% for
validation, 75% for training and 10% for validation and 80% for training and5% for validation.

One could employ different algorithms for training amachine learningmodel. For our case, we
explored the following three algorithms: the Levenberg–Marquardt (Levenberg, 1944; Marquardt,
1963) algorithm, the scaled conjugate gradient (Møller, 1993) algorithm and the Bayesian
regularization (MacKay, 1992; Foresee and Hagan, 1997) algorithm. These three algorithms have
been demonstrated by previous studies in terms of their success in achieving relatively good
accuracy under various circumstances (e.g. Doan and Liong, 2004; Kayri, 2016; Khan et al., 2019;
Selvamuthu et al., 2019; Xu and Zhang, 2021a, d, 2022a, c, 2023b). Baghirli (2015) and Al Bataineh
and Kaur (2018) have carried out targeted studies comparing these three algorithms. Table 2
contains the specification of each ANN and ANN–Xmodel setting examined in the present work.
Figure 2 visualizes the architecture of the final neural networks constructed in this study.

Algorithm Levenberg–Marquardt scaled conjugate gradient Bayesian regularization

Delay 1
2
5
10
20
30

Hidden neuron 5
10
15
25
35
50

Training vs validation vs testing 60% vs 25% vs 15%
65% vs 20% vs 15%
70% vs 15% vs 15%
75% vs 10% vs 15%
80% vs 5% vs 15%

Source(s): Elaborated by the authors

Table 2.
Explored ANN and
ANN–X model settings
for the trading volume
prediction of the
CSI300 nearby futures
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Figure 2.
The three final neural
network models’ block

diagram
representations
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3.1 Levenberg–Marquardt algorithm
The Levenberg–Marquardt algorithm targets the realization of approximating the second-
order training speed. By doing this, the algorithm could avoid computing H – the Hessian
matrix and thus accelerate training speed (Paluszek and Thomas, 2020). For this algorithm,
using a system with weights denoted as w1 and w2 as an example, the approximation is as
follows:

H ≈ JTJ ; (5)

where

J ¼ vE

vw1

vE

vw2

� �
(6)

for a non-linear function denoted as E($), which includes information on the sum square error
and whose

H ¼

v2E

vw2
1

v2E

vw1vw2

v2E

vw2vw1

v2E

vw2
2

2
66664

3
77775: (7)

The gradient would be reflected as follows:

g ¼ JTe; (8)

where e is employed to denote a vector of errors. In order to make updates to the weights and
the biases, the rule as follows is to be adopted:

wkþ1 ¼ wk � JTJ þ μI
� �−1

JTe; (9)

where w is employed to denote the weight vector, k is employed to denote the index of the
iteration during the model training process, I is employed to denote the identity matrix and μ
is employed to denote the combination coefficient (noting that μ is always positive). For the
case that μ5 0, this algorithmwould turn out to be similar to the Newton approach.When μ is
large, this algorithm would turn to be gradient descent based on small step sizes. When a
successful step is reached, μ would be decreased due to reduced requirements for the fast
gradient descent. The Levenberg–Marquardt algorithm inhabits good properties of steepest-
descent types of algorithms and Gauss-Newton types of techniques while avoiding some of
their limitations. To be more specific, it would efficiently address the concern of slow
convergence (Hagan and Menhaj, 1994).

3.2 Scaled conjugate gradient algorithm
Adjustments of weights are conducted along the steepest descent in a backpropagation
algorithm due to the need to realize fast decreases of a given performance function in that
direction. But this does not always lead to the fastest convergence and model training.
A conjugate gradient algorithm would carry out searching along the conjugate direction,
which would generally result in quicker convergence as compared to the steepest descent
method. A learning rate is often adopted by different algorithms for deciding the length of an
updated weight step size. When it comes to the case of a conjugate gradient algorithm, the
step size would be modified in the processes of iterations. Therefore, searching is carried out
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along the conjugate gradient direction with the purpose of determining a step size to realize
the reduction of a given performance function. In addition, as line searching by a conjugate
gradient algorithm could be time-consuming, the scaled conjugate gradient algorithm would
be adopted to improve the training speed. The scaled conjugate gradient algorithm is
generally faster as compared to a Levenberg–Marquardt backpropagation-based algorithm.

3.3 Bayesian regularization algorithm
Cross-validation could be lengthy. But it is not required by a Bayesian regularized NN.
Essentially, the Bayesian regularization would convert nonlinear types of regressions to
statistical issues in the matter of ridge types of regressions and the algorithm would explore
the weights’ probabilistic nature related to the underlying data under investigation. The
chance of overfitting would, however, increase dramatically when additional hidden layers of
neurons are used. Thus, in a Bayesian regularization algorithm, unreasonable sophisticated
models would be penalized with the corresponding linkage weights pushed to 0. As a result,
the NN would concentrate on non-trivial weights. Naturally, some parameters would
converge to constant values as the NN grows. A Bayesian regularized NNwould generally be
more parsimonious as compared to a basic backpropagation network. It would also help
reduce the probability of model overfitting due to the underlying data noises.

4. Results
4.1 ANN
We show, in Figure 3, root mean square errors (RMSEs) generated by the ANN models that
are trained through the Levenberg–Marquardt algorithm and based upon the trading
volume’s own lags of the CSI300 nearby futures contract. With the consideration of the need
to balance model prediction accuracy and the stabilities of model performance across the
three phases of training, validation and testing, we make the selection of the ANNmodel that
uses 10 hidden neurons and 20 delays.We denote thismodel as ANN-1 and the corresponding
performance in terms of RMSEs is 955.67 for training, 957.94 for validation and 955.32 for
testing. The summary of the ANN-1 model is included in Table 3. A similar analysis has been
conducted for ANN models trained via the other two algorithms (results available upon
request). Combining all analysis results, we present, in Figure 4, the prediction performance
of the top three candidate models and determine that the ANN-1 model is still the optimal
choice for balancing model prediction accuracy and stabilities of model performance. Please
note that in Figure 4, RMSEs are 956.17 for training, 975.75 for validation and 922.75 for
testing for the ANN model trained via the Levenberg–Marquardt algorithm, which is based
upon 15 hidden neurons and 30 delays. And, RMSEs are 951.77 for training and 949.91 for
testing for the ANN model trained via the Bayesian regularization algorithm, which
consumes much more time than the ANN-1 model. For the remaining of this work, our focus
would be the Levenberg–Marquardt algorithm for model training.

We present, in Figure 5, four variations of the ANN-1 model associated with different data
segmentation ratios utilized during model building. Specifically, the ANN-1 model uses 70% of
the data for training, 15% of the data for validation and 15% of the data for testing. The four
variations maintain 15% of the data for testing but consider the following ratios for training and
validation purposes: 60% for training and 25% for validation, 65% for training and 20% for
validation, 75% for training and 10% for validation and 80% for training and 5% for validation.
According to the results shown in Figure 5, one would be able to see that the ratio of 70% for
training, 15% for validation and 15% for testing results in the most stable model performance
across the three phases. Thus, for the remaining of this work, our focus would be this data
segmentation ratio. Through reserving 15% of the trading volume data for the testing purpose,
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we have also conducted additional analysis by executing the model based upon each of the five
different segmentation ratios for training and validation for one hundred times and comparing
means of the validation results. It turns out that the ratios of 60% for training and 25% for
validation, 65% for training and 20% validation, 70% for training and 15% for validation, 75%
for training and 10% for validation and 80% for training and 5% for validation lead to means of
validation RMSEs of 958.59, 953.67, 952.82, 970.23 and 998.45, respectively, which support the
choice of the ratio of 70% for training, 15% for validation and 15% for testing.

Visualization of ANN-1’s predictions is shown in Figure 6 and visualization of ANN-1’s
prediction errors is shown in Figure 7. In Figure 6, the dark solid 45-degree line associated
with “perfect prediction” stands for the situation for which a point on this line indicates no
prediction error. Considering that ANN-1’s prediction performance is rather stable, Figures 6
and 7 have combined visualization results for the training, validation and testing data
because separating the plots for different phases almost does not create different
visualization for the three sub-samples. For the remaining of this work, we would follow
this practice for ANN–X models as well.
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Based upon the analysis of the ANN-1model, we could observe that the trading volume of the
CSI300 nearby futures contract would be able to be predicted with 1–20 min ahead trading
volume data, considering that the ANN-1 model is based upon 20 delays and the 1-min data
are utilized for model building, through a relatively low complex model that has 10 hidden
neurons [3] based on its own lags, leading to rather robust prediction performance with the
RMSE being about 955 contracts across the three phases. Prediction errors are concentrated
around 0 with a high peak in frequency as visualized in Figure 7. Several trading volumes of
the CSI300 nearby futures, including the largest trading volume that is observed, however,

Figure 6.
ANN-1 predictions

Figure 7.
ANN-1 prediction

errors
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show prediction results of 0 as visualized in Figure 6. This problem is somewhat remediated
by further including the trading volumes of the CSI300 spot and CSI300 first distant futures in
the ANN–X models that we turn to next.

4.2 ANN–X
Similar to the analysis based on the ANN models, Figure 8 reports RMSEs for the ANN–X
models when the trading volume of the CSI300 spot is further included as part of model
training. We test the trading volume of the CSI300 spot prior to the trading volume of the
CSI300 first distant futures due to the closer relation between the CSI300 nearby futures and
CSI300 spot as compared to that between the CSI300 nearby futures and CSI300 first distant
futures (Xu, 2019b). Balancing model prediction accuracy and model performance stabilities
across different phases, we make the selection of the ANN–X model that has 15 hidden
neurons and 30 delays, denoted as ANN–X-1. This model results in RMSEs of 949.37 for
training, 946.50 for validation and 935.85 for testing. The summary of the ANN–X-1 model is
included in Table 3. Predictions from the ANN–X-1 model are reported in Figure 9 and
corresponding prediction errors are reported in Figure 10.

We finally include the trading volumes of both the CSI300 spot and CSI300 first distant
futures formodel training and reportRMSEs forANN–Xmodels inFigure 11.Again, balancing
model prediction accuracy andmodel performance stabilities across the three phases, wemake
the selection of the ANN–Xmodel that has 35 hidden neurons and 30 delays, denoted as ANN–
X-2. It results in RMSEs of 942.44 for training, 934.04 for validation and 940.20 for testing. The
summary of the ANN–X-2 model is included in Table 3. Predictions from the ANN–X-2 model
are visualized in Figure 12 and corresponding prediction errors are visualized in Figure 13.

In Figure 14,wemake comparisons ofmodel performance based on theANN-1,ANN–X-1 and
ANN–X-2models. It could be observed that including the trading volumes of the CSI300 spot and
CSI300 first distant futures could help improve prediction accuracy by a robust modest
magnitude of about 1–2%. This, however, significantly helps some near-zero predictions of the
trading volumes via the own-lag-onlymodel, i.e. theANN-1model, as can be observed bymaking
comparisons of prediction results shown in Figures 6, 9, and 12. To be more specific, one should
be able to observe, in Figure 6, that there exist certain amounts of data points that showpredicted
tradingvolumes of zero or near zerowhile their associated observed trading volumes are not zero.
These data points could be visually located in Figure 6, whose associated vertical axis (i.e. the
predicted tradingvolume of theCSI300 nearby futures contract) values are zero or near zerowhile
the corresponding horizontal axis (i.e. the observed trading volume of the CSI300 nearby futures
contract) values are not zero. When we turn attention to results in Figures 9 and 12, we would
observe that such data points have been largely eliminated, particularly, for the results shown in
Figure 12. Another benefit is that the prediction of the trading volume of the CSI300 nearby
futureswould be generated via 1–30min ahead trading volumedatawith the incorporation of the
additional series, considering that the ANN–X-1 andANN–X-2models are based upon 30 delays
and the 1-min data are employed for model building, although the complexity of the models
would slightly increase as additional hidden neurons would be required.

4.3 Subperiod analysis
To test whether prediction accuracy would be affected by the number of shortable stocks in
the CSI300, we run the models, i.e. ANN-1, ANN–X-1 and ANN–X-2, on three subperiods with
different numbers of shortable stocks and compare the results. The first subperiod isApril 16,
2010–December 4, 2011, during which 90 stocks in the CSI300 are shortable. The second
subperiod is December 5, 2011–January 30, 2013, during which 260 stocks are shortable. The
third subperiod is January 31, 2013–November 14, 2014, during which all 300 stocks are
shortable. The results are presented in Figure 15, together with those for the whole sample
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from April 16, 2010, to November 14, 2014. We could observe from Figure 15 that the trading
volume of the CSI300 nearby futures of the first subperiod is most accurately predicted,
followed by the second subperiod and then the third subperiod. This result is intuitive
because with more stocks becoming shortable, the trading becomes more volatile and harder
to predict. From Figure 15, we still observe that incorporating the spot and first distant
futures improves predictions for the three subperiods. Specifically, this can be seen when
comparing the result of ANN-1 with those of ANN–X-1 and ANN–X-2 for a given subperiod
and subsample.

Figure 9.
ANN–X-1 predictions

Figure 10.
ANN–X-1 prediction
errors
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4.4 Benchmark analysis
We have performed benchmark analysis through comparisons of the ANN-1 model with the
linear autoregressive (denoted as AR) model and the linear autoregressive integrated moving
average (denoted as ARIMA) model. Considering that the ANN–X-1 and ANN–X-2 models
include additional predictive information as compared to the AR and ARIMAmodels and the
performance of ANN–X-1 and ANN–X-2 has been shown to be better than that of the ANN-1
model, we have not benchmarked them against the AR or ARIMAmodel. In determining the
lag of the AR model, the Bayesian information criterion (Schwarz, 1978) has been employed.

Figure 12.
ANN–X-2 predictions

Figure 13.
ANN–X-2 prediction
errors
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The structure of the ARIMA model has also been determined through the Bayesian
information criterion (Schwarz, 1978). We have applied the modified Diebold-Mariano
(Diebold and Mariano, 2002) test (Harvey et al., 1997) for the purpose of making comparisons
of model performance. The modified test mitigates some shortcomings of the original test,
particularly the potential over-sized issues. The modified test is based upon dt as follows:

dt ¼ errorM1
t

� �2
� errorM2

t

� �2
; (10)

where errorM1
t and errorM2

t are employed to denote two error terms at time t that are
generated based upon model M1 and model M2, respectively. Here, we would denote AR or
ARIMA as model M1 and ANN-1 as model M2. The test statistic for comparing model
performance is denoted as MDM as follows:

MDM ¼ T þ 1� 2hþ T−1hðh� 1Þ
T

� �1=2
T−1 γ0 þ 2

Xh�1

k¼1

γk

 !" #−1=2
d
�

; (11)

whereT is employed to denote the length of the time period of the testing phase, h is employed
to denote the prediction horizon (h5 1 for our application), �d is employed to denote the sample
average of dt,

γ0 ¼ T−1
XT
t¼1

dt � �d
� 	2

(12)

is employed to denote the variance of dt, and

γk ¼ T−1
XT
t¼kþ1

dt � �d
� 	

dt−k � �d
� 	

(13)

is employed to denote the kth auto-covariance of dt for k5 1, . . ., h� 1 and h ≥ 2. Under the
null that two models being compared result in equal mean squared errors, the MDM test
would follow the t – distribution whose degrees of freedom is T � 1. We report RMSEs
stemming from the AR model and the ARIMA model in Table 3. We have found that the p
values of the MDM tests are below 0.001. This result suggests that prediction accuracy
stemming from the ANN-1 model is statistically significantly better than prediction accuracy
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stemming from the AR model and the ARIMA model. We have also conducted comparisons
of performance based on the superior predictive ability (SPA) test (Hansen, 2005) as a
robustness check and found that this test determines that the performance of the ANN-1
model is statistically significantly better than that of the ARmodel and the ARIMAmodel as
well. We note that using the Akaike information criterion (Akaike, 1974) for determining the
lag of the AR model and the structure of the ARIMA model does not affect this conclusion.
It should bementioned here that a certainmodel that is not performing aswell as compared to
another model would not necessarily mean that the particular model would not be able to
contribute to prediction results. Many previous studies on prediction combinations actually
have targeted at constructing different weights for different models’ predictions with the
purpose of potentially improving prediction accuracy. One interesting research field of
prediction combinations is combining linearmodels and nonlinearmodels. Previous research,
such as Stock and Watson (1998) and Blake and Kapetanios (1999), would have offered good
examples in this research area. Hansen et al. (2011) have introduced the concept of the model
confidence set (MCS), which is a useful technique to select optimalmodels with a given level of
confidence.

Following the same idea of comparing the ANN-1 model with the AR and ARIMAmodels,
we have also compared the performance of the ANN–X-1 model with that of the AR–X-1 and
ARIMA–X-1models, where X refers to the trading volume of the CSI300 spot, and performance
of the ANN–X-2model with that of the AR–X-2 andARIMA–X-2models, where X refers to the
trading volumes of the CSI300 spot and first distance futures. The RMSEs based upon the
AR–X-1, ARIMA–X-1, AR–X-2 and ARIMA–X-2 models are reported in Table 3. We have
found that the p values of theMDM tests are below 0.001 for comparisons between theANN–X-
1model and theAR–X-1 andARIMA–X-1models. This result suggests that the performance of
ANN–X-1 is statistically significantly better than that of AR–X-1 and ARIMA–X-1. Similarly,
we have found that the p values of theMDM tests are below 0.001 for comparisons between the
ANN–X-2 model and the AR–X-2 and ARIMA–X-2 models. This result suggests that the
performance of ANN–X-2 is statistically significantly better than that of AR–X-2 andARIMA–
X-2. As a robustness check, we have also conducted comparisons of performance based on the
SPA test (Hansen, 2005) and found that it still holds that performance of ANN–X-1 is
statistically significantly better than that of AR–X-1 and ARIMA–X-1 and performance of
ANN–X-2 is statistically significantly better than that of AR–X-2 and ARIMA–X-2.

5. Conclusion
For policymakers and participants of financial markets, predictions of trading volumes of
financial indices are important issues. In this present work, we address such a prediction
problem based on the CSI300 nearby futures by using high-frequency data recorded on a
minute basis, which has never been explored in previous studies. We adopt the neural
network for modeling the irregular trading volume series and have key empirical findings as
follows. Our results show that we could construct a rather simple neural network model,
trained via the Levenberg–Marquardt (Levenberg, 1944; Marquardt, 1963) algorithm, with 10
hidden neurons to robustly predict the trading volume of the CSI300 nearby futures using one
to twenty minutes ahead trading volume data. The model robustly leads to the root mean
square error of about 955 contracts across the three phases of training, validation and testing.
Utilizing additional predictive information from trading volumes of the CSI300 spot and first
distant futures could further benefit prediction accuracy and themagnitude of improvements
is about 1–2%. This benefit is particularly significant when the trading volume of the CSI300
nearby futures is close to be zero. Another benefit, at the cost of the model becoming slightly
more sophisticated with more hidden neurons, is that predictions could be generated through
1–30 min ahead trading volume data as the corresponding neural networks would use 30
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delays and 15 or 35 neurons, which also are trained via the Levenberg–Marquardt
(Levenberg, 1944; Marquardt, 1963) algorithm. Our results could be used for multiple
purposes, including designing financial index trading systems and platforms in terms of
ongoing evaluating system/platform limits for processing trading activities, monitoring
systematic financial risks in terms of ongoing detecting possible abnormal trading activities
and building financial index price forecasting as suggested in the literature that one might
make use of predictive information from the trading volume for helping improve the
prediction accuracy of financial index prices. Our results here would be useful to
policymakers from different countries for the purpose of designing another financial index
or reforming an existing financial index. To be more specific, gaining good understanding of
the trends of financial trading volumes would help the planning of a relatively new financial
index from a thin market to a liquid and mature market. Although our present work focuses
on relatively fundamental neural networkmodels, developments in themachine learning field
suggest that there existmore advancedmodels, such as the convolutional neural network and
long short-term memory neural network, which have been seen in the literature for financial
predictions. Explorations of more advancedmodels should be a worthwhile avenue for future
studies on predicting financial trading volumes, including that of the CSI300 futures.

Notes

1. It is possible that different platforms couldgenerate slightly different tradingvolumedata for eachminute.
It is worth noting that trading volumes of the CSI300 spot are always 0 from 9:16 a.m. to 9:29 a.m. on a
trading day.

2. When different futures contracts are being investigated, the contract that has the closest settlement
date is named the nearby contract. The first distant contract is the contract which settles right after
the nearby contract.

3. We state “a relatively low complex model” from our empirical judgment that the ANN-1 model with
10 hidden neurons is not so complex for our case.
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